skip to main content


Search for: All records

Creators/Authors contains: "van Tonder, Rijnard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Static analysis is a proven technique for catching bugs during software development. However, analysis tooling must approximate, both theoretically and in the interest of practicality. False positives are a pervading manifestation of such approximations—tool configuration and customization is therefore crucial for usability and directing analysis behavior. To suppress false positives, developers readily disable bug checks or insert comments that suppress spurious bug reports. Existing work shows that these mechanisms fall short of developer needs and present a significant pain point for using or adopting analyses. We draw on the insight that an analysis user always has one notable ability to influence analysis behavior regardless of analyzer options and implementation: modifying their program. We present a new technique for automated, generic, and temporary code changes that tailor to suppress spurious analysis errors. We adopt a rule-based approach where simple, declarative templates describe general syntactic changes for code patterns that are known to be problematic for the analyzer. Our technique promotes program transformation as a general primitive for improving the fidelity of analysis reports (we treat any given analyzer as a black box). We evaluate using five different static analyzers supporting three different languages (C, Java, and PHP) on large, real world programs (up to 800KLOC). We show that our approach is effective in sidestepping long-standing and complex issues in analysis implementations. 
    more » « less
  2. null (Ed.)
    Plan reuse is a promising approach for enabling self-* systems to effectively adapt to unexpected changes, such as evolving existing adaptation strategies after an unexpected change using stochastic search. An ideal self-* planner should be able to reuse repertoires of adaptation strategies, but this is challenging due to the evaluation overhead. For effective reuse, a repertoire should be both (a) likely to generalize to future situations, and (b) cost effective to evaluate. In this work, we present an approach inspired by chaos engineering for generating a diverse set of adaptation strategies to reuse, and we explore two analysis approaches based on clone detection and syntactic transformation for constructing repertoires of adaptation strategies that are likely to be amenable to reuse in stochastic search self-* planners. An evaluation of the proposed approaches on a simulated system inspired by Amazon Web Services shows planning effectiveness improved by up to 20% and reveals tradeoffs in planning timeliness and optimality. 
    more » « less
  3. Automatically transforming programs is hard, yet critical for automated program refactoring, rewriting, and repair. Multi-language syntax transformation is especially hard due to heterogeneous representations in syntax, parse trees, and abstract syntax trees (ASTs). Our insight is that the problem can be decomposed such that (1) a common grammar expresses the central context-free language (CFL) properties shared by many contemporary languages and (2) open extension points in the grammar allow customizing syntax (e.g., for balanced delimiters) and hooks in smaller parsers to handle language-specific syntax (e.g., for comments). Our key contribution operationalizes this decomposition using a Parser Parser combinator (PPC), a mechanism that generates parsers for matching syntactic fragments in source code by parsing declarative user-supplied templates. This allows our approach to detach from translating input programs to any particular abstract syntax tree representation, and lifts syntax rewriting to a modularly-defined parsing problem. A notable effect is that we skirt the complexity and burden of defining additional translation layers between concrete user input templates and an underlying abstract syntax representation. We demonstrate that these ideas admit efficient and declarative rewrite templates across 12 languages, and validate effectiveness of our approach by producing correct and desirable lightweight transformations on popular real-world projects (over 50 syntactic changes produced by our approach have been merged into 40+). Our declarative rewrite patterns require an order of magnitude less code compared to analog implementations in existing, language-specific tools. 
    more » « less
  4. Of the hundreds of billions of dollars spent on developer wages, up to 25% accounts for fixing bugs. Companies like Google save significant human effort and engineering costs with automatic bug detection tools, yet automatically fixing them is still a nascent endeavour. Very recent work (including our own) demonstrates the feasibility of automatic program repair in practice. As automated repair technology matures, it presents great appeal for integration into developer workflows. We believe software bots are a promising vehicle for realizing this integration, as they bridge the gap between human software development and automated processes. We envision repair bots orchestrating automated refactoring and bug fixing. To this end, we explore what building a repair bot entails. We draw on our understanding of patch generation, validation, and real world software development interactions to identify six principles that bear on engineering repair bots and discuss related design challenges for integrating human workflows. Ultimately, this work aims to foster critical focus and interest for making repair bots a reality. 
    more » « less
  5. Cryptocurrencies are a significant development in recent years, featuring in global news, the financial sector, and academic research. They also hold a significant presence in open source development, comprising some of the most popular repositories on GitHub. Their openly developed software artifacts thus present a unique and exclusive avenue to quantitatively observe human activity, effort, and software growth for cryptocurrencies. Our data set marks the first concentrated effort toward high-fidelity panel data of cryptocurrency development for a wide range of metrics. The data set is foremost a quantitative measure of developer activity for budding open source cryptocurrency development. We collect metrics like daily commits, contributors, lines of code changes, stars, forks, and subscribers. We also include financial data for each cryptocurrency: the daily price and market capitalization. The data set includes data for 236 cryptocurrencies for 380 days (roughly January 2018 to January 2019). We discuss particularly interesting research opportunities for this combination of data, and release new tooling to enable continuing data collection for future research opportunities as development and application of cryptocurrencies mature. 
    more » « less
  6. Static analysis tools have demonstrated effectiveness at finding bugs in real world code. Such tools are increasingly widely adopted to improve software quality in practice. Automated Program Repair (APR) has the potential to further cut down on the cost of improving software quality. However, there is a disconnect between these effective bug-finding tools and APR. Recent advances in APR rely on test cases, making them inapplicable to newly discovered bugs or bugs difficult to test for deterministically (like memory leaks). Additionally, the quality of patches generated to satisfy a test suite is a key challenge. We address these challenges by adapting advances in practical static analysis and verification techniques to enable a new technique that finds and then accurately fixes real bugs without test cases. We present a new automated program repair technique using Separation Logic. At a high-level, our technique reasons over semantic effects of existing program fragments to fix faults related to general pointer safety properties: resource leaks, memory leaks, and null dereferences. The procedure automatically translates identified fragments into source-level patches, and verifies patch correctness with respect to reported faults. In this work we conduct the largest study of automatically fixing undiscovered bugs in real-world code to date. We demonstrate our approach by correctly fixing 55 bugs, including 11 previously undiscovered bugs, in 11 real-world projects. 
    more » « less
  7. Code translation is a staple component of program analysis. A lifter is a code translation unit that translates low-level code to a higher-level intermediate representation (IR). Lifters thus enable a host of static and dynamic analyses for such low-level code. However, writing a lifter is a tedious manual process which must be repeated for every architecture an analysis aims to support. We introduce cross-architecture lifter synthesis, a novel approach that automatically synthesizes lifters for previously unsupported architectures. Our insight is that lifter synthesis can be bootstrapped with existing IR sketches that exploit the shared semantic properties of heterogeneous architecture instruction sets. We show that our approach automates a significant amount of translation effort for a previously unsupported instruction set, and that it enables discovery of new bugs on new architecture targets through reuse of an existing IR-based analysis. 
    more » « less
  8. Precise crash triage is important for automated dynamic testing tools, like fuzzers. At scale, fuzzers produce millions of crashing inputs. Fuzzers use heuristics, like stack hashes, to cut down on duplicate bug reports. These heuristics are fast, but often imprecise: even after deduplication, hundreds of uniquely reported crashes can still correspond to the same bug. Remaining crashes must be inspected manually, incurring considerable effort. In this paper we present Semantic Crash Bucketing, a generic method for precise crash bucketing using program transformation. Semantic Crash Bucketing maps crashing inputs to unique bugs as a function of changing a program (i.e., a semantic delta). We observe that a real bug fix precisely identifies crashes belonging to the same bug. Our insight is to approximate real bug fixes with lightweight program transformation to obtain the same level of precision. Our approach uses (a) patch templates and (b) semantic feedback from the program to automatically generate and apply approximate fixes for general bug classes. Our evaluation shows that approximate fixes are competitive with using true fixes for crash bucketing, and significantly outperforms built-in deduplication techniques for three state of the art fuzzers. 
    more » « less